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LETTERS TO THE EDITORS 

Comment on “Equivalent conductivity of a heterogeneous medium” 

IN A RECENT paper, Muralidhar [I] has investigated the 
thermal conductivity of a composite medium. This numerical 
study was based on a two-dimensional, square spatial 
domain. Two sides of the domain were insulated, while the 
other two were subject to fixed temperature boundary con- 
ditions. Effective conductivities were calculated for different 
patterns and numbers of inclusions in the form of circular 
voids. Void fractions ranged up to 20%. One of the main 
conclusions drawn in the paper is that ‘a composite medium 
can be homogenized using statically determined conduc- 
tivities, even for unsteady problems’ [I]. It is apparent from 
this statement that the determination of the static equivalent 
conductivity is of some interest. The purpose of this comment 
is to re-examine the static equivalent conductivity results by 
comparison with classical effective medium theory. 

For a two phase medium, it is well known (e.g. ref. [2]) 
that the effective conductivity of the medium is bounded by 
the volume weighted arithmetic mean conductivity, k,, from 
above, and from below by the corresponding harmonic 
mean, kh 

and 

k, = I-V+Va (la) 

kh =[;+I-vl-’ (1’4 
L -I  

where proportion V of the medium has conductivity a and 
proportion 1 - V has a unit conductivity. Equation (la) is 
the ‘rule of mixtures’ result given in ref. [3]. Note also that 
this equation corrects equation (16) in ref. [I]. 

Hashin and Shtrikman [4] studied effective magnetic penne- 
abilities using a variational approach. For the case of a two 
phase medium they obtained improved bounds as compared 
with those in equation (1). Their upper (ky) and lower (k,) 
bounds are, respectively 

k,= I+ 
V 

and 

I-V 
k, =a+-. 

Dagan [5] used a similar procedure in a groundwater Row 
application. For the latter situation, for example, it is of 
interest to determine the effective hydraulic conductivity of 
the flow domain from knowledge of the probability density 
function of the (assumed random) hydraulic conductivity. 
The following result from Dagan’s work is relevent here : 

k+ = 1 f(k) cui - ’ 
2 [S 1 k+k* 

where k* is the effective conductivity of the medium, f  the 
probability density function and the range of integration is 
over the domain off. Equation (3) is based on the assumption 
of an unbounded, two-dimensional spatial domain over 

which k can vary randomly. Note that Kirkpatrick [6] pro- 
vides an alternative derivation of equation (3). 

For the two phase material under consideration we define 
fas 

f(k) = (1- V)&k- l)+ V6(k-a) (4) 
where 6 is the Dirac delta function. Substituting f from 
equation (4) into equation (3) gives a simple quadratic fork* 

k*‘-(I -2V)(l -a)k*-a = 0. (5) 

In summary, k* gives the effective conductivity of the two 
phase medium with the bounds 

kh < k, < k* Q k, < k, (6) 
Allowing a to be non-zero corresponds to the general prob- 
lem considered in ref. [ 11, although a z 0 for the particular 
application of interest in the paper (cylinder blocks of IC 
engines). For this case equations (l), (2) and (5) give 

kh = k, = 
1, v=o 

0, v>o 

k*= 

I 

I-2v, v< l/2 

0, vr l/2 

k, =& (74 

and 
k, = I- V. (74 

Clearly, equations (7a) and (7b) are not useful. The reason 
for such poor quality lower bounds is, of course, that the 
medium is composed of material of conductivity 0 and 1, so 
it is possible by appropriate arrangement of the inclusions 
for the low-conductivity material to make the material com- 
pletely insulating. 

The predictions of equations (7+(7e) are now compared 
with the numerical experiments reported by Muralidhar (see 
Fig. 2 of ref. [I]). In Fig. I the numerical data are reproduced. 
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FIG. 1. Comparison of static effective conductivity vs V 
reported by Muralidhar [l] (pluses) with equations (7~) (solid 

line), (7d) (long dashes) and (7e) (short dashes). 
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along with curves corresponding to equations (7c)-(7e). This 
figure shows that the arithmetic mean, /c,, is an appropriate 
upper bound for the numerical data rather thank,, whereas 
the prediction of k* underestimates the results. This result is 
not surprising since the effect of the boundaries has been 
ignored. Indeed, it is reasonable to assume that the insulating 
side boundaries imposed in the numerical simulations will 
tend to increase the effective conductivity relative to a 
domain that is unbounded in the transverse direction. Thus, 
k* acts as an approximate lower bound of the effective con- 
ductivity while k, remains as the upper bound. These bounds 
may be compared with I- 1.63 V,-the best straight-line fit of 
the numerical data [I]. It is interesting to observe that k, 
gives, at first sight, a reasonable fit of the numerical data, 
although one may question whether the curvature is correct. 

In conclusion, the finite, square domain with circular 
inclusions studied by Muralidhar [I] violates the assumptions 
of classical effective medium theory. In particular, the latter 
is based on the assumptions that the averaging volume is 
large compared with that of the inclusion, and that the num- 
ber of inclusions within the medium is large. The results in 
Fig. 1 show, however, that the classical theory provides useful 
bounds on the numerical results. In the absence of other 
information, it appears that k* is a reasonable estimator of 
the effective conductivity. Finally, the conclusion reached by 
Muralidhar [I] that the static effective conductivity can be 

used for unsteady problems corresponds with a similar con- 
clusion for unbounded groundwater flow domains reached 
by Dagan [5]. 
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Comments on “Analysis of close-contact melting for octadecane and ice 
inside isothermally heated horizontal rectangular capsule” 

THE PURPOSE of this letter is to point out that the thin liquid 
film analysis reported in ref. [l] is a special case of a more 
general theory published almost three years ago [2], which 
was apparently overlooked. Reference [2] described melting 
on a rectangular contact surface, with or without relative 
motion (sliding) between the two solid parts, and with or 
without heating due to viscous dissipation in the liquid film. 
The analysis of Hirata et al. qualifies as a special case of ref. 
[2] for three reasons. They assumed that : 

(i) The rectangular contact surface is infinitely wide (the 
short side was labeled Win their Fig. 4). 

(ii) There is no relative motion, that is, the phase-change 
material does not slide laterally. 

(iii) Viscous dissipation in the lubricating tilm is neg- 
ligible. 

Hirata et al.‘s key theoretical result-the film thickness 
formula (17)-is essentially the same as equation (21) in ref. 
PI 

t = [P”,(%) m]‘14 (21) 

in which h is the film thickness, L the short side of the contact 
surface (Hirata et al.‘s IF), Sle the liquid Stefan number, a 
the thermal diffusivity, p the viscosity, and r$ = 1 the factor 
accounting for the infinitely wide shape of the contact area. 
When the contact area is a rectangle with the same L but 
hnite width, the factor 4 is smaller than 1 (Fig. 2 in ref. [2]). 

It is important to note that equation (21) is expressed in 

terms of the instantaneous average pressure (P.) maintained 
between the phase-change material and the flat heater. In 
this way the results of ref. [2] are applicable to any geometry 
in which the instantaneous average pressure may change with 
time, for example, because of the finiteness of the solid block 
of phase-change material, and the size and shape of the 
capsule (as in Hirata ef al’s geometry). 

Equation (21) stresses the fact that the contact melting 
process is quasisteady, i.e. decoupled from the other time- 
dependent features of the greater system. In this sense, the 
presence of time as a variable on the right-hand side of Hirata 
et al.‘s film thickness formula (17) is misleading: the time- 
dependence entered that expression only through the instan- 
taneous average pressure, which changes slowly with time. 
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